Some time back, a colleague pointed me to some anonymized Medicare Claims data. It contains (structured) claims data from 2,326,856 members, consisting of 1,332,822 inpatient records and 15,826,987 outpatient records. It occurred to me that looking at selected subsets of this data across different dimensions may provide some interesting insights, perhaps using some kind of web-based tool that allows filtering over these dimensions. I even ingested this data into a Solr 4.9 index on my laptop that took quite a while to complete. However, I was distracted by something brighter/shinier, so the index just sat there until I got back to it last week.
People seem to prefer using ElasticSearch for analytics, but I already know Solr, so I decided to use Solr as the search backend. Since our main use case with Solr is concept searching (using our proprietary customizations) over text, I don't have much experience with the newer Solr 4.x features that focus on analytics style queries, so I figured this would be a good way to learn.
I decided to use Spring for the web framework, once again because I already know it and its the one web framework that feels kind of natural to me, and because some people (at Pivotal Labs) are doing it with Scala already. The last time I used a pure Scala stack (Play2) for this kind of work, I spent more time fighting with the framework than doing actual work, so especially for web applications, I prefer to use stuff I know.
One problem with this setup is that using JSTL comes with some challenges. Specifically, JSTL expects to see Java POJOs and Java collection objects, which are different from Scala case classes and collection objects. One possibility is to replace JSTL with Scalate Server Pages (SSP), but that creates its own set of problems, and ultimately I got round the problem by building a Data Transfer Layer (DTO) consisting of Java POJOs and populating these and sticking them into the model from my Scala code.
I plan on writing about this project over multiple posts, mainly because its going to take me multiple weeks to build, and also because one giant post at the end is too hard for me to write and (I think) too hard for you to read. In this post I concentrate on the basic setup and the first page which allows you to filter various population parameters. I am mainly interested in describing the data analysis part, but you could use the setup as a template to build your own data analysis (or other) project - it involves a Spring Controller that handles two kinds of requests, and delegates to Solr via a Service class, and a JSP that shows charts and information based on parameters passed in - in other words, somewhat more complex and realistic than the Pivotal Labs setup, although that did get me to where I am.
SBT Setup
I used giter8 to build the Scala project, then added the web plugin based on instructions from the Pivotal Labs blog post, so I could start and stop Jetty from sbt. Here is my build.sbt.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | // Source: build.sbt
name := "claimintel"
organization := "com.mycompany"
version := "0.1"
scalaVersion := "2.10.2"
sbtVersion := "0.13.1"
jetty()
libraryDependencies ++= Seq(
"org.apache.solr" % "solr-core" % "4.9.0",
"org.springframework" % "spring-webmvc" % "4.0.0.RELEASE",
"jfree" % "jfreechart" % "1.0.13",
"org.eclipse.jetty" % "jetty-webapp" % "9.1.0.v20131115" % "container, compile",
"org.eclipse.jetty" % "jetty-jsp" % "9.1.0.v20131115" % "container",
"org.apache.commons" % "commons-lang3" % "3.0",
"net.sourceforge.collections" % "collections-generic" % "4.01",
"commons-beanutils" % "commons-beanutils" % "1.8.3",
"commons-io" % "commons-io" % "2.4",
"log4j" % "log4j" % "1.2.14",
"com.novocode" % "junit-interface" % "0.8" % "test"
)
|
and my plugins.sbt:
1 2 3 4 5 | // Source: project/plugins.sbt
addSbtPlugin("com.earldouglas" % "xsbt-web-plugin" % "1.0.0")
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.4.0")
|
This allows you to start and stop the Jetty container hosting the application from with the SBT shell, using the container:start and container:stop commands. For a real deployment, sbt package will build a WAR file. Once all the other components (described below) are in place, the application can be accessed from a browser at the URL "http://localhost:8080/index.html".
Web Setup
The web.xml file specifies that Spring will take care of routing URLs to the appropriate Controller class via the DispatcherServlet. We are using Spring's annotation based configuration to specify the routing information directly as annotations on the controller methods.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | <!-- Source: src/main/webapp/WEB-INF/web.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<display-name>ClaimIntel Web Application</display-name>
<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>
<init-param>
<param-name>contextClass</param-name>
<param-value>org.springframework.web.context.support.AnnotationConfigWebApplicationContext</param-value>
</init-param>
<init-param>
<param-name>contextConfigLocation</param-name>
<param-value>com.mycompany.claimintel.Config</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>dispatcher</servlet-name>
<url-pattern>*.html</url-pattern>
</servlet-mapping>
</web-app>
|
The configuration to determine which JSP the controller sends its model to is specified in the Config.scala class below. This is part of the configuration for the DispatcherServlet.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | // Source: src/main/scala/com/mycompany/claimintel/Config.scala
package com.mycompany.claimintel
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.ComponentScan
import org.springframework.web.servlet.view.InternalResourceViewResolver
import org.springframework.web.servlet.view.JstlView
@ComponentScan(basePackages = Array("com.mycompany.claimintel"))
class Config {
@Bean
def viewResolver = {
val viewResolver = new InternalResourceViewResolver()
viewResolver.setViewClass(classOf[JstlView])
viewResolver.setPrefix("/WEB-INF/views/")
viewResolver.setSuffix(".jsp")
viewResolver
}
}
|
Controller
The landing page of the application displays a set of bar charts down the left and corresponding numeric statistics down the right. Each bar chart shows the distribution of the member data along a specific dimension. For example, the first dimension is Gender. The bar chart shows the distribution by Gender (Male, Female). The corresponding table on the right lists the actual counts and percentages for Male and Female members, along with checkboxes that allow you to filter the results to only Male or Female members.
Similarly, the other dimensions displayed are Age (in 10 year bands), Ethnicity, State of Residence, and Comorbidity. All but the last dimension is mutually exclusive, ie, one member can have only one attribute at a time. However, for comorbidity, a member can have more than one disease at the same time. You can drill down into a dimension via one or more attributes by selecting and unselecting the associated checkbox. Selections are sticky so you can use this to look at sub-populations (for example, Diabetes in 40-60 year old Hispanic males across various states).
The landing page comes up via the index.html as well as population.html URLs. The charts are generated via img tags embedded in the index.jsp page, which call the chart.html URL. Notice that the annotations look similar to the corresponding Java ones with some minor differences.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | // Source: src/main/scala/com/mycompany/claimintel/ClaimController.scala
package com.mycompany.claimintel
import java.net.URLEncoder
import javax.servlet.http.HttpServletRequest
import javax.servlet.http.HttpServletResponse
import scala.collection.JavaConversions._
import scala.util.parsing.json.JSON
import scala.util.parsing.json.JSONObject
import org.springframework.beans.factory.annotation.Autowired
import org.springframework.stereotype.Controller
import org.springframework.stereotype.Service
import org.springframework.ui.Model
import org.springframework.web.bind.ServletRequestUtils
import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RequestMethod
import com.mycompany.claimintel.dtos.CategoryStats
import com.mycompany.claimintel.dtos.PopDistrib
@Controller
class ClaimController @Autowired() (
solrService: SolrService,
chartService: ChartService){
@RequestMapping(value = Array("/index.html"),
method = Array(RequestMethod.GET))
def index(req: HttpServletRequest, res: HttpServletResponse,
model: Model): String = population(req, res, model)
@RequestMapping(value = Array("/population.html"),
method = Array(RequestMethod.GET))
def population(req: HttpServletRequest, res: HttpServletResponse,
model: Model): String = {
val popFilters = buildPopulationFilter(req)
val popFacets = solrService.populationFacets(popFilters)
popFacets.keys.foreach(pfname => {
val pfdata = popFacets(pfname)
val popDistrib = new PopDistrib()
popDistrib.setEncodedData(URLEncoder.encode(
JSONObject(pfdata).toString(), "UTF-8"))
val total = pfdata.values.foldLeft(0L)(_ + _)
popDistrib.setStats(seqAsJavaList(pfdata.map(entry => {
val cstats = new CategoryStats()
cstats.setName(entry._1)
cstats.setCount(entry._2)
cstats.setPcount(1.0D * entry._2 / total)
cstats.setSelected(solrService.isSelected(
popFilters, pfname, entry._1))
cstats
})
.toList
.sortWith((a,b) => a.getName() < b.getName())))
popDistrib.setTotal(total)
model.addAttribute(pfname, popDistrib)
})
// the age facet is the only one that we will treat as
// a continuous variable, so we distinguish by name
val agedata = solrService.populationAgeFacet(popFilters)
val ageDistrib = new PopDistrib()
ageDistrib.setEncodedData(URLEncoder.encode(
JSONObject(agedata).toString(), "UTF-8"))
val ageTotal = agedata.values.foldLeft(0L)(_ + _)
ageDistrib.setStats(seqAsJavaList(agedata.map(entry => {
val cstats = new CategoryStats()
cstats.setName(entry._1)
cstats.setCount(entry._2)
cstats.setPcount(1.0D * entry._2 / ageTotal)
cstats.setSelected(solrService.isSelected(
popFilters, "bene_age", entry._1))
cstats
})
.toList
.sortWith((a,b) => a.getName().split("-")(0).toInt <
b.getName().split("-")(0).toInt)))
ageDistrib.setTotal(ageTotal)
model.addAttribute("bene_age", ageDistrib)
"index"
}
def buildPopulationFilter(req: HttpServletRequest):
List[(String,String)] = {
val shouldFilter = ServletRequestUtils.getBooleanParameter(
req, "filter", false)
if (! shouldFilter) List.empty[(String,String)]
else {
val pmap = req.getParameterMap()
req.getParameterNames()
.filter(pname => (pname.startsWith("bene_") ||
pname.startsWith("sp_")))
.map(pname => pmap(pname).map(pval => (pname, pval)))
.flatten
.toList
}
}
@RequestMapping(value = Array("/chart.html"),
method = Array(RequestMethod.GET))
def chart(req: HttpServletRequest, res: HttpServletResponse,
model: Model): String = {
val chartType = ServletRequestUtils.getRequiredStringParameter(req, "type")
val data = JSON.parseFull(
ServletRequestUtils.getRequiredStringParameter(req, "data"))
.get.asInstanceOf[Map[String,Double]]
val title = ServletRequestUtils.getStringParameter(req, "title", "")
val xtitle = ServletRequestUtils.getStringParameter(req, "xtitle", "")
val ytitle = ServletRequestUtils.getStringParameter(req, "ytitle", "")
val width = ServletRequestUtils.getIntParameter(req, "width", 500)
val height = ServletRequestUtils.getIntParameter(req, "height", 300)
chartType match {
case "bar" => chartService.bar(
data, title, xtitle, ytitle, true, width, height,
res.getOutputStream())
}
null
}
}
|
Services
There are two services, one that interfaces with a Solr instance and provides application specific methods to retrieve data, and another that uses the JFreeChart API to render data driven charts. Both are auto-wired into the Controller using the @AutoWired() annotation.
The SolrService is shown below. The first method is fairly straightforward, and just sends a facet query using all dimensions except for age. Most of the rest of the code is to pull counts for age-band facets - we store member date of births in the index, but to the application, we expose a pseudo parameter "bene_age", so it also provides methods for the controller to convert back and forth between the range query on "bene_birth_date" and "bene_age".
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | // Source: src/main/scala/com/mycompany/claimintel/SolrService.scala
package com.mycompany.claimintel
import java.util.Calendar
import java.util.Date
import java.util.Locale
import java.util.regex.Pattern
import scala.collection.JavaConversions._
import org.apache.solr.client.solrj.SolrQuery
import org.apache.solr.client.solrj.SolrQuery.ORDER
import org.apache.solr.client.solrj.impl.HttpSolrServer
import org.springframework.stereotype.Service
@Service
class SolrService {
val server = new HttpSolrServer("http://localhost:8983/solr/collection1")
def name = "SolrService"
def populationFacets(filters: List[(String,String)]):
Map[String,Map[String,Long]] = {
val query = new SolrQuery()
query.setQuery("*:*")
query.setFilterQueries("rec_type:B")
filters.filter(nv => (! "bene_age".equals(nv._1)))
.foreach(nv => query.addFilterQuery(List(nv._1, nv._2)
.mkString(":")))
query.setFacet(true)
query.addFacetField("bene_sex", "bene_race", "sp_state", "bene_comorbs")
query.setRows(0)
val resp = server.query(query)
resp.getFacetFields().map(ff =>
(ff.getName(), ff.getValues()
.map(fv => (fv.getName(), fv.getCount())).toMap))
.toMap
}
def findDateOfBirth(youngest: Boolean): Date = {
val query = new SolrQuery()
query.setQuery("*:*")
query.setFilterQueries("rec_type:B")
query.setRows(1)
query.setFields("bene_birth_date")
query.setSortField("bene_birth_date",
if (youngest) ORDER.asc else ORDER.desc)
val resp = server.query(query)
resp.getResults()
.head
.getFieldValue("bene_birth_date")
.asInstanceOf[Date]
}
def populationAgeFacet(filters: List[(String,String)]):
Map[String,Long] = {
// find top and bottom birth dates
val youngestDob = findDateOfBirth(true)
val oldestDob = findDateOfBirth(false)
val now = new Date()
val lb = round(yearsBetween(oldestDob, now), 10, false)
val ub = round(yearsBetween(youngestDob, now), 10, true)
val fqs = (lb to ub by 10)
.sliding(2)
.toList
.map(v => intervalToQuery(v.mkString("-")))
// now make the query
val query = new SolrQuery()
query.setQuery("*:*")
query.setFilterQueries("rec_type:B")
filters.filter(nv => ("bene_age".equals(nv._1)))
.map(nv => intervalToQuery(nv._2))
.foreach(fq => query.addFilterQuery(fq))
query.setRows(0)
query.setFacet(true)
fqs.foreach(fq => query.addFacetQuery(fq))
val resp = server.query(query)
resp.getFacetQuery().entrySet()
.map(e => (queryToInterval(e.getKey()), e.getValue().toLong))
.toMap
}
def yearsBetween(d1: Date, d2: Date): Int = {
val cal1 = Calendar.getInstance(Locale.getDefault())
cal1.setTime(d1)
val cal2 = Calendar.getInstance(Locale.getDefault())
cal2.setTime(d2)
cal2.get(Calendar.YEAR) - cal1.get(Calendar.YEAR)
}
def round(v: Int, nearest: Int, roundUp: Boolean): Int =
if (roundUp) (Math.ceil(1.0D * v / nearest) * nearest).toInt
else (Math.floor(1.0D * v / nearest) * nearest).toInt
val IntervalQueryTemplate =
"bene_birth_date:[NOW-%dYEAR TO NOW-%dYEAR]"
val IntervalQueryPattern = Pattern.compile(
"""bene_birth_date:\[NOW-(\d+)YEAR TO NOW-(\d+)YEAR\]""")
def queryToInterval(q: String): String = {
val m = IntervalQueryPattern.matcher(q)
if (m.matches()) List(m.group(2), m.group(1)).mkString("-")
else "0-0"
}
def intervalToQuery(interval: String): String = {
val bounds = interval.split("-").map(_.toInt)
IntervalQueryTemplate.format(bounds(1), bounds(0))
}
def isSelected(facetFilters: List[(String,String)],
klhs: String, krhs: String): Boolean =
facetFilters.filter(nvp =>
(klhs.equals(nvp._1) && krhs.equals(nvp._2)))
.size > 0
}
|
The ChartService currently only has a single method to render bar charts. As you can see, the code is very boilerplate-y, but the idea is to provide high level methods that allow the caller to plot different kinds of charts. I hope to add more methods for other chart types as I need them.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | // Source: src/main/scala/com/mycompany/claimintel/ChartService.scala
package com.mycompany.claimintel
import java.awt.Color
import java.io.OutputStream
import org.jfree.chart.ChartFactory
import org.jfree.chart.ChartRenderingInfo
import org.jfree.chart.ChartUtilities
import org.jfree.chart.axis.AxisLocation
import org.jfree.chart.entity.StandardEntityCollection
import org.jfree.chart.plot.CategoryPlot
import org.jfree.chart.plot.PlotOrientation
import org.jfree.data.category.DefaultCategoryDataset
import org.springframework.stereotype.Service
import org.apache.commons.lang3.StringUtils
@Service
class ChartService {
def name = "ChartService"
def bar(data: Map[String,Double], title: String,
xtitle: String, ytitle: String,
horizontal: Boolean, width: Int, height: Int,
ostream: OutputStream): Unit = {
val dataset = new DefaultCategoryDataset()
// if data is a range, then sort them differently
val sortedKeys = if (data.keys.head.indexOf("-") > -1)
data.keys.toList.sortWith((a,b) =>
a.split("-")(0).toInt < b.split("-")(0).toInt)
else data.keys.toList.sorted
sortedKeys.map(k => dataset.addValue(data(k), title, k))
val orientation = if (horizontal) PlotOrientation.HORIZONTAL
else PlotOrientation.VERTICAL
val chart = ChartFactory.createBarChart(title, xtitle, ytitle,
dataset, orientation, false, true, false)
val plot = chart.getPlot().asInstanceOf[CategoryPlot]
plot.setBackgroundPaint(Color.WHITE)
plot.setRangeGridlinePaint(Color.WHITE)
plot.setRangeAxisLocation(AxisLocation.BOTTOM_OR_LEFT)
plot.setNoDataMessage(if (title.isEmpty) "Please Wait" else title)
val info = new ChartRenderingInfo(new StandardEntityCollection())
val image = chart.createBufferedImage(width, height, info)
ChartUtilities.writeBufferedImageAsPNG(ostream, image)
ostream.flush()
}
}
|
Data Transfer Objects
As I mentioned earlier, one problem with using JSTL is that it expects Java POJOs and Collections. While Scala provides a JavaConversions class that provides such conversions, it becomes tiresome to do this for each thing you want to stick into the Model. Also, while Scala case classes are really convenient, I couldn't get JSTL to recognize methods in them. So my solution was to build a mixed-language project (SBT can build pure Scala, pure Java, or mixed Scala+Java projects without any changes), where I built two POJOs for transferring data from the Scala controller to the JSTL JSPs. The controller populates these POJOs, using JavaConversions as needed (minimal compared to the first approach). Here are my POJOs, nothing fancy, just a class with a bunch of getters and setters.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | // Source: src/main/java/com/mycompany/claimintel/dtos/PopDistrib.java
package com.mycompany.claimintel.dtos;
import java.util.List;
public class PopDistrib {
private String encodedData;
private List<CategoryStats> stats;
private long total;
public String getEncodedData() {
return encodedData;
}
public void setEncodedData(String encodedData) {
this.encodedData = encodedData;
}
public List<CategoryStats> getStats() {
return stats;
}
public void setStats(List<CategoryStats> stats) {
this.stats = stats;
}
public long getTotal() {
return total;
}
public void setTotal(long total) {
this.total = total;
}
}
// Source: src/main/java/com/mycompany/claimintel/dtos/CategoryStats.java
package com.mycompany.claimintel.dtos;
public class CategoryStats {
private String name;
private long count;
private double pcount;
private boolean selected;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public long getCount() {
return count;
}
public void setCount(long count) {
this.count = count;
}
public double getPcount() {
return pcount;
}
public void setPcount(double pcount) {
this.pcount = pcount;
}
public boolean isSelected() {
return selected;
}
public void setSelected(boolean selected) {
this.selected = selected;
}
}
|
View
Finally, the view is a plain old JSTL JSP. My JSP skills are not that great, you will probably notice a great deal of redundancy. Each block deals with displaying the data for an individual dimension, and the whole thing is wrapped in a form. Here is the JSP.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | <!-- Source: src/main/webapp/WEB-INF/views/index.jsp -->
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"%>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<title>ClaimIntel :: Population Statistics</title>
</head>
<body>
<h2>Distribution of Member Population across different dimensions</h2>
<hr/>
<form method="GET" action="/population.html">
<input type="hidden" name="filter" value="true"/>
<p>
<h3>Distribution by Gender</h3>
<table cellspacing="3" cellpadding="0" border="0" width="100%">
<tr>
<td width="50%" valign="top">
<img src="/chart.html?type=bar&data=${bene_sex.encodedData}&height=200"/>
</td>
<td width="50%" valign="top">
<table cellspacing="1" cellpadding="0" border="1">
<tr>
<td><b>Gender</b></td>
<td><b>Frequency</b></td>
<td><b>Relative Frequency (%)</b></td>
<td><b>Filter</b></td>
</tr>
<c:forEach items="${bene_sex.stats}" var="stat">
<tr>
<td>${stat.name}</td>
<td><fmt:formatNumber type="number" maxFractionDigits="0" value="${stat.count}"/></td>
<td><fmt:formatNumber type="percent" maxFractionDigits="2" value="${stat.pcount}"/></td>
<td><input type="checkbox" name="bene_sex" value="${stat.name}" <c:if test="${stat.selected}">checked</c:if> /></td>
</tr>
</c:forEach>
<tr>
<td><b>Total</b></td>
<td><b><fmt:formatNumber type="number" maxFractionDigits="0" value="${bene_sex.total}"/></b></td>
<td><b>100.00%</b></td>
<td/>
</tr>
</table><br/><br/>
</td>
</tr>
</table>
</p>
<p>
<h3>Distribution by Age</h3>
<table cellspacing="3" cellpadding="0" border="0" width="100%">
<tr>
<td width="50%" valign="top">
<img src="/chart.html?type=bar&data=${bene_age.encodedData}"/>
</td>
<td width="50%" valign="top">
<table cellspacing="1" cellpadding="0" border="1">
<tr>
<td><b>Age</b></td>
<td><b>Frequency</b></td>
<td><b>Relative Frequency (%)</b></td>
<td><b>Filter</b></td>
</tr>
<c:forEach items="${bene_age.stats}" var="stat">
<tr>
<td>${stat.name}</td>
<td><fmt:formatNumber type="number" maxFractionDigits="0" value="${stat.count}"/></td>
<td><fmt:formatNumber type="percent" maxFractionDigits="2" value="${stat.pcount}"/></td>
<td><input type="checkbox" name="bene_age" value="${stat.name}" <c:if test="${stat.selected}">checked</c:if> /></td>
</tr>
</c:forEach>
<tr>
<td><b>Total</b></td>
<td><b><fmt:formatNumber type="number" maxFractionDigits="0" value="${bene_sex.total}"/></b></td>
<td><b>100.00%</b></td>
<td/>
</tr>
</table><br/><br/>
</td>
</tr>
</table>
</p>
<p>
<h3>Distribution by Ethnicity</h3>
<table cellspacing="3" cellpadding="0" border="0" width="100%">
<tr>
<td width="50%" valign="top">
<img src="/chart.html?type=bar&data=${bene_race.encodedData}"/>
</td>
<td width="50%" valign="top">
<table cellspacing="1" cellpadding="0" border="1">
<tr>
<td><b>Ethnicity</b></td>
<td><b>Frequency</b></td>
<td><b>Relative Frequency (%)</b></td>
<td><b>Filter</b></td>
</tr>
<c:forEach items="${bene_race.stats}" var="stat">
<tr>
<td>${stat.name}</td>
<td><fmt:formatNumber type="number" maxFractionDigits="0" value="${stat.count}"/></td>
<td><fmt:formatNumber type="percent" maxFractionDigits="2" value="${stat.pcount}"/></td>
<td><input type="checkbox" name="bene_race" value="${stat.name}" <c:if test="${stat.selected}">checked</c:if> /></td>
</tr>
</c:forEach>
<tr>
<td><b>Total</b></td>
<td><b><fmt:formatNumber type="number" maxFractionDigits="0" value="${bene_race.total}"/></b></td>
<td><b>100.00%</b></td>
<td/>
</tr>
</table><br/><br/>
</td>
</tr>
</table>
</p>
<p>
<h3>Distribution by State</h3>
<table cellspacing="3" cellpadding="0" border="0" width="100%">
<tr>
<td width="50%" valign="top">
<img src="/chart.html?type=bar&data=${sp_state.encodedData}&height=1200"/>
</td>
<td width="50%" valign="top">
<table cellspacing="1" cellpadding="0" border="1">
<tr>
<td><b>State</b></td>
<td><b>Frequency</b></td>
<td><b>Relative Frequency (%)</b></td>
<td><b>Filter</b></td>
</tr>
<c:forEach items="${sp_state.stats}" var="stat">
<tr>
<td>${stat.name}</td>
<td><fmt:formatNumber type="number" maxFractionDigits="0" value="${stat.count}"/></td>
<td><fmt:formatNumber type="percent" maxFractionDigits="2" value="${stat.pcount}"/></td>
<td><input type="checkbox" name="sp_state" value="${stat.name}" <c:if test="${stat.selected}">checked</c:if> /></td>
</tr>
</c:forEach>
<tr>
<td><b>Total</b></td>
<td><b><fmt:formatNumber type="number" maxFractionDigits="0" value="${sp_state.total}"/></b></td>
<td><b>100.00%</b></td>
<td/>
</tr>
</table><br/><br/>
</td>
</tr>
</table>
</p>
<p>
<h3>Distribution by Disease</h3>
<table cellspacing="3" cellpadding="0" border="0" width="100%">
<tr>
<td width="50%" valign="top">
<img src="/chart.html?type=bar&data=${bene_comorbs.encodedData}"/>
</td>
<td width="50%" valign="top">
<table cellspacing="1" cellpadding="0" border="1">
<tr>
<td><b>Disease</b></td>
<td><b>Frequency</b></td>
<td><b>Relative Frequency (%)</b></td>
<td><b>Filter</b></td>
</tr>
<c:forEach items="${bene_comorbs.stats}" var="stat">
<tr>
<td>${stat.name}</td>
<td><fmt:formatNumber type="number" maxFractionDigits="0" value="${stat.count}"/></td>
<td><fmt:formatNumber type="percent" maxFractionDigits="2" value="${stat.pcount}"/></td>
<td><input type="checkbox" name="bene_comorbs" value="${stat.name}" <c:if test="${stat.selected}">checked</c:if> /></td>
</tr>
</c:forEach>
<tr>
<td><b>Total</b></td>
<td><b><fmt:formatNumber type="number" maxFractionDigits="0" value="${bene_comorbs.total}"/></b></td>
<td><b>${bene_comorbs.total}</b></td>
<td><b>100.00%</b></td>
<td/>
</tr>
</table><br/><br/>
</td>
</tr>
</table>
</p>
<input type="submit" value="Filter Results"/> ||
<a href="/population.html">Clear Filters</a>
</form>
</body>
</html>
|
And finally, this is what the landing page looks like. Its quite long so I show the top (showing the gender, age and ethnicity dimensions) and the bottom (showing the state of residence (partial) and disease comorbidity dimensions).
Some preliminary observations from the charts above... The Male-Female distribution seems to be almost evenly distributed, the maximum number of members seem to be between 60 and 90 years old, membership seems to be predominantly white, the top four states where members are located are CA, FL, TX and NY, Ischemic Heart Disease (IHD) seems to be the most predominant disease, followed by Diabetes. More insights can be had if you start filtering by various dimensions.
All the code I referred to in the post is available on this GitHub project. The GitHub version is going to be the authoritative version, and is likely to differ from the snapshots provided on this post as the project evolves.
2 comments (moderated to prevent spam):
Great that you also use giter8
Yes, thanks, I find it quite useful to build sbt controlled projects.
Post a Comment